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CHAPTER I

Introduction

The diffraction of scalar (acoustical) waves by the tip of an elliptical perfectly

conducting cone was studied by Krauss and Levine I1]. Satterwhite and Kouy-

ournjian 12] examined the vector electromagnetic problem and presented a Green's

dyadic for a source radiating in the pr, sence of an angular sector. However, their

solution, expressed in terms of non-closed form Lame functions, is cumbersome

for numerical calculations. Furthermore, so far it has not appeared possible to

asymptotically identify a "corner diffraction coefficient" from this eigenfunction

representation.

Recently, Burnside and Pathak 13] proposed a corner diffraction coefficient

which succesfuly predicted the corner effect of numerous plate structures. Their

solution is based on the asymptotic evaluation of the radiation integral involving

the equivalent currents that would exist in the absence of the corner. A corner

diffraction term is then established by heuristically, but at present empirically,

modifying the final result. Sikta [41 modified the spread factor of the diffracted

field in 13] and applied a limiting process to derive the wave diffracted by the

corner and propagating along one of the edges of a plane right angular sector.

By introducing an empirically established "reflection coefficient" he utilized his

edge wave corner diffraction coefficient in the calculation of the double and triple

diffraction by two adjacent corners of a fRat plete structure.



The equivalent current approach is adopted herein to study the vertex diffrac-

tion of an ele "tromagnetic wave guided along one of the edges of a semi-infinite

wedge. The geonletry of the problem is illustrated in Fig. 1. The dipole source is

radiating in the close vicinity of the edge and excites a paraxial field guided by one

of the edges of the trihedron - hence the term "edge wave". Explicit expressions of

this field are derived in Chapter II based on the limiting behavior of the Green's

dyadic for an infinite wedge 17] and small distances of the dipole from the edge, and

the canonical solution (Fresnel integral representation) to the half plane problem

for plane wave grazing incidence. A simple edge diffraction coefficient can then be

established valid for small distances of the source from the edge and for paraxial

field calculations.

IELD POINT

DIPOLE SOURCE

OC

Figure 1: An infinitesimal electric dipole source radiating in the close vicinity of
one of the edges of a semi-infinite wedge.

In Chapter III a Physical Optics approximation of the vertex diffracted field

is presented, based on the currents that would be induced by the edge guided

wave for an infinite wedge which is then truncated. The asymptotic evaluation

2



of the surface currents radiation integral appropriately encounters the edge wave

singularity consistent with Meixner's edge condition 15].

The concept of equivalent currents is generally examined in Chapter IV. The

end point contribution to the rar "-tion integral of these currents "excited" by the

impinging edge wave is interpreted as a vertex diffraction term. Two types of

equivalent currents for arbitrary aspects of observation is shown to yield compara-

ble results. Edge wave vertex and edge wave edge diffraction coefficients can then

be established by an empirical modification of the asymptotic field expressions.

The validity of the approach is confirmed via comparison with moment method

results and pattern measurements for a small dipole radiating in the close vicinity

of one of the edges of a polygonal plate.

Every structure considered in the present work is assumed perfectly conduct-

ing. Furthermore, an exp (jwto) time dependence has been adopted and suppressed

in the following analysis.

3



CHAPTER II

Edge Waves

2.1 Introduction.

The term "edge waves" in the present work defines waves propagating along

the edge of a (possibly curved) wedge. The edge wave is actually a form of a

maxwellian field guided by the edge, and exhibiting the proper singularity in ac-

cordance with Meixner's edge condition.

As shown later in this chapter, such a paraxial singular field can be excited

either by a plane wave at grazing incidence, or by a dipole radiating in the close

vicinity of the edge. The vertex of a terminated edge illuminated by a plane or

spherical wave can also excite an edge wave. Independently of the excitation,

but sufficiently far from its source, the edge wave behaves and can be treated

as a ray optical field. However, application of ray optical techniques (UTD) is

not straightforward, mainly due to the singular behavior of the paraxial fields.

An asymptotic high frequency approximation which encounters this peculiarity is

attempted in Chapters III and IV.

Two types of excitation of an edge wave are examined in this chapter: a plane

wave grazing the edge of a half plane and an elementary dipole radiating in the

near vicinity of the edge of an infinite wedge. The limiting behavior of the fields

predicted by the canonical solution for the half plane problem and the leading term

of the power series expansion of the Green's dyadic with respect to the numerical

4



distance Iop' of the point source from the edge (where ko = 27r/A denotes the

free space wavenumber) are examined. The two cases are related via reciprocity

so that a simple edge diffraction dyadic coefficient can be readily established and

applied in the approximation of the patterns of complex sources radiating in the

close vicinity of the edge or in paraxial field calculations.

2.2 The canonical solution to the half plane problem. Some limiting
cases.

A perfectly conducting half plane is illuminated by an arbitrarily polarized

plane wave, as depicted in Fig. 2. For convenience, the origin of our reference frame

has been chosen to coincide with the origin Q' of the Keller cone of diffracted rays,

defined by the angle 61 of incidence and the observation point R(p, 4h, z). Since

the only dependence of the total field on the z coordinate is incorporated into the

factor exp(-jkoz cos6'), the problem is essentially quasi two dimensional. It can

be easily shown that the 0 and &directed field components can be expressed in

terms of the E. and Hz components via the equations

VtEz i x VtH, (2.1a)Et = -jkz ioy -kz2 + J, o o k2 - k2 2.a

VtHz "x iEz (2.1b)

Ht = -jkz o _ ,JWOoo k2 - k2

where kz = ko cosp', wo = ko/vIA--4i and go, eo are the permeability and the

pernittivity of the free space. The operator Vt is defined by

A,. a I
Vt = p OP + 4 .00 (2.2)

Sommerfeld's canonical solution to the half plane problem can be expressed

in a compact form in terms of the modified Fresnel Integral. In particular, we have

5



R

Figure 2: Half plane illuminated by an arbitrarily polarized plane wave.

where we substituted

U 4.(p, 0; 0';3') = K-(- /2k-opsin3' cos t-0) (2.4)

and a can be expressed in terms of the coordinates (p, 0, z) of the observation point

R as

a = p sin/# + z cosl3' (2.5)

The function K_(z) is the modified Fresnel Integral defined by [61

/ -() F_(r) exp{j(r 2 + w/4)} (2.6)

F_(r) j exp(-jf 2 )df (2.7)

6



Incorporating eqs. (2.3)-(2.7) into eqs. (2.la)-(2.lb) and performing the dif-

ferentiations one can readily obtain a complete representatior of the transverse (to

the z direction) components of the electric and magnetic fields. Namely, one finds

that

Ep(p,4),z) = E .(Qe) Cos#.' fui cos(4) - 0)- U, cos(4) + 01')]

+E'I(Qe) (u' sin(4) - 01 + ur sin(4, + 4)')]1

+2 exp(-jir/4) sin)

V27cop sin fl' 2

.(Ej(Qe) cos #'sin - +±E'#,Qe) Cos !] exp(-ikoa)

(2.8a)

Eo(p,4)z = ~ (Qe) cos 13' [u't sin(4) -4') - u* sin(4) + 0')]

+E'IdQe) [U, cos(4) - 0, + Ur cos(4) + 0)

+2exp(-jir/4) Co)

V27rkop sin L?' 2

.l~(Q ) os3'in~-+ E , (Qe) cs exp(-jkos)

(2.8b)

while the transverse magnetic field i1~ can be obtained by using duality.

Of particular inter-st in our work is the limiting behavior of the above expres-

sions for small values of the parameter

e(p;/3') = kop sin#3' (2.9)

Eqs. (2.8a)-(2.8b) can then be represented by a power series expansion of the form

C- 1/ Q (), Z) 00
E(p, )z) = + E 01(0, z)f' (2.10)

Vf_ 10

As E(p; fl') -. 0 one may write

7



E,(p,,z) = O(tO) (2.11)

Z) -" exp(-j r/4)(0sin t +Cos)

[E (Qe) cos/3' sin t + E ,(Qe) cos t exp(-jkos)

+6(,O) (2.12)

where 0(Se) denotes the remainder in the power series expansion and its order with

respect to e.

DIPOLE

MAI,
A

Figure 3: An infinitesimal electric dipole source radiating in the close vicinity of
the edge of an infinite perfectly conducting wedge.

At grazing incidence the leading term in the power series expansion of

Et(p,,z) represents a wave guided along the edge of the half plane (an edg"

wave) given by

, eO, =expi -)w/4)(1, sin 2 + C Cos-)

8



.S(101 exp(-jkOz) (2.13)

where

,E (Qe) sin(O'/2) + E' (Q") cos(e'/2)]

is a source related factor. The wave described by eqs. (2.13), (2.14) satisfies the

wave equation, the Meixner's edge condition and dominates the field in the paraxial

region.

2.3 The limiting behavior of the dyadic Green's function for a dipole
radiating in the close vicinity of the infinite edge of a wedge.

Let us consider the more general reciprocal problem of a point source

j( f- ;) radiating in the presence of a perfectly conducting infinite wedge as

depicted in Fig. 3. The field produced by this dipole-wedge configuration can be

formally written as

(f") = jWO,sO r . ) ri (2.15)

where F(F, ') is the Green's dyadic for the wedge. An eigenfunction series repre-

sentation of r(F,r') is given in 17).

For convenience the source point is located at S(p,01#,o), (rf - p',3 _ r/2).

Furthermore, let kor >> I, so that the spherical Hankel functions of the second

kind involved in the series representation assume their asymptotic form. The

limiting form of the Green's dyadic for small values of the parameter e = kop' sinS

is of interest here. After some tedioupt manipulation it can he shown that

' C(v)(kop'sin 0')"1 ( cos sinsik + 4 Cos.',)

(p sin v' + j' cos,14/) e x p ( - j x'Or ) +T(e ° ) (2.16)

with the constant factor C() defined I)3

9



= 'r(2v + 2) exp{j(v + 1)w/2))
,/w23v+ r(v) r(v + 1)r(v + 3/2) (2.17)

and

( = I n - (2.18)
n W

where (WA) denotes the wedge angle. Hence, the total field for a general wedge is

written as

E(r) = joo( v)(kop'sinl)" 1 (0 cos3 sin vO + jcosvO)

• sin 4' + P I exp(-jkor) + 0(c) (2.19)

which, in the case of the half plane, reduces to the following expression:

=i v'4 Zoexp(jr/4) Ae(pI, j)

c cos 3sin(0/2) + 4 cos(0/2) exp(-jk0r) + 6(O) (2.20)

where

A(p,4) = Pet sin(O'/2) + p e, cos('/2)A'p V (2.21)

is a constant source factor. The remainder 6(to) in eq. (2.19) can be expressed in

a closed form only for the case of the half plane. Specifically, it can be obtained

via reciprocity from eqs. (2.8a)-(2.8b) after subtracting the edge wave term. In

the case of a general wedge angle the remainder is essentially a power series of the

small parameter e, the coefficients of which can be derived from the eigenfuction

series representation of the Green's dyadic.

The lower order term in the RHS of eq. (2.19) dominates in the paraxial

region (edge wave) and reveals the strong coupling between the dipole source and

the edge. 1t is a spherical ray Optical wom- tait atisfies Maxwell's equalions.

10



Clearly, the behavior of the electric field intensity of the edge wave is independent

of the orientation of the source.

2.4 The half plane case,

As pointed out in the previous section an exact closed form representation of

the Fraunhofer region field produced by the dipole j radiating in the presence

of an infinite half plane can be obtained by applying the reciprocity theorem to

eqs. (2.8a)-(2.8b). For small distances of the dipole from the edge one can retain

only the two leading terms in the power series expansion of the modified Fresnel

integrals involved in the canonical solution. It turns out that the total radiated

field can be described by the superposition of three terms:

i) The incident field produced by the dipole in the absence of the half plane

multiplied by a factor of 1/2,

ii) The field produced by the image of the dipole source with respect to an

infinite plane multiplied by a factor of 1/2,

iii) An edge associated field, which may be treated as an edge diffracted wave

(emanating from Q") in a UTD sense.

It should be noted that the components i), ii) illuminate the whole space and

not only the regions bounded by the Geometrical Optics incident and reflected

shadow boundaries. Under this consideration the total field is uniform everywhere

and satisfies the appropriate boundary conditions on the conducting half plane. In

a matrix notation one can write for the radiated fieldII F Epe"'V(f) j5 0Zo exN)-jAk0r)

(exp{jk0p'sin t? cos(0 -6')

11



-cos~cns(O-0') -cospsn(-01) sin }
s in(O4 - 0') - cos(O - OF) 0

+ exp{j kop sill 0cos(O + ')}

cospcos(40+0') -cospsin(0+0') -sin

-Sin(O, + 0') - COO( + 0) 0

• ,(2.22)

in which ECU'(F) denotes the edge associated term. The latter can be readily

obtained from eqs. (2.13), (2.14) or eqs. (2.20), (2.21). By empirically generalizing

those results the diffracted field can be expressed in a more familiar notation by

the following equation:

IE ' 2exp(-jw/4)

E V, J V sin P0{ sin Isin ; cosl80 ososint E(w)}

sec13osin ICos Co Cost

e(a ') exp(-jkos) (2.23)

The various parameters involved in the above expression are shown in Fig. 3. Also,

E0,,(Qe) are the ray optical components of the total field incident at the point

Qe and produced by the dipole source, namely

E = -jkoZO koD) cos (2.241

12



with Po = flo denoting the diffraction angle. It should be mentioned that eq. (2.23)

reduces to the correct liniting expression of the field in the paraxial region of the

edge (,3o --+ 0), exhibiting the appropriate edge singularity.

2.5 Discussion and numerical results.

The accuracy of the "edge wave" solution given by eqs. (2.23)-(2.24) in pre-

dicting the field for small distances of a point dipole source from the edge of

a half plane is illustrated in Figs. 4-9, in comparison with the exact Sommer-

feld (Fresnel integral) representation, for several azimuthal angles 4' of the ob-

servation point which, for simplicity, is removed at infinity. The infinitesimal

source has a dipole moment radially directed and it is located at the points

(p', 4,') = (0.025\ 0 , 1350), (0.05,\ 0 , 750), (0.075\o, 1800), in terms of the asso-

ciated system of cylindrical coordinates centered at the projection of the point

source onto the edge of the half plane. The amplitude pattern of the /3- and

4-directed field components is then plotted against the elevation angle of the ob-

servation point. Comparison with the exact representation of the total field shows

that a distance p' < 0.05Ao is adequate for the total field to be accurately de-

scribed (within 1.0 dB of magnitude) by eqs. (2.23)-(2.24). As a matter of fact,

the accuracy is improved for smaller distances of the dipole or the field point (i.e.,

when grazing incidence is approached) from the edge of the half plane. In the

latter case the total field exhibits a singular behavior which is consistent with the

edge condition.

Clearly, the analysis of the waves associated with the edge of an infinite wedge

fails in the case of finite or semi-infinite edges. First, the edge wave term should be

suitably modified so that the singularity in the extension of the edge is eliminated.

Second, the corner effects should be incorporated in the total solution. Asymp-

13



totically, the end point effect is additively introduced into the total solution and

corresponds to a corner diffracted ray. On the other hand, the edge wave singular-

ity is compensated multiplicatively with the introduction of the proper transition

dyadic. Within this context, for a dipole radiating in the close vicinity of a ter-

minated edge and sufficiently far from the corner (in the angular sector case), the

total field can be written as

= + E w + id (2.25)

where I 0 is half the field produced by the dipole and its image with respect to

the plane of the plate in free space, id is the sum of the corner and, possibly, the

terminating edge diffracted field and T is a transition dyadic to be determined.

An empirical definition of this transition dyadic is given in Chapter IV.

14
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CHAPTER III

A Physical Optics Approximation of the Edge Wave Vertex Diffracted

Field

3.1 Introduction.

One of the simplest approaches to high frequency scattering problems is the

Physical Optics approximation. This method assumes the surface of'a perfectly

conducting scatterer is locally plane and approximates the total field at the points

of the surface illuminated by the incident wave with the superposition of the inci-

dent and reflected field. The field is considered zero at the shadowed part of the

surface. The scattered wave is then evaluated via the radiation integral of the in-

duced surface currents. Normally, Physical Optics fails to adequately approximate

the scattered field in observation directions sufficiently away from the specular and

backscatter directions.

The study of the edge wave corner diffraction mechanism with the Physical

Optics approach, however, is conceptually different. The excitation dipole is lo-

cated in the close vicinity of the edge of a finite wedge and sufficiently far from

its vertex as shown in Fig. 10. The induced surface currents are approximated by

the currents that would flow over the surface of an infinite wedge. The end point

contribution to the radiation integral is then interpreted as a corner diffracted

wave.

This approach is expected generally to yield an acceptable approximation of

'8
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the diffracted field whenever the edge wave current flow lines are not significantly

distorted in the vicinity of the vertex. Moment method results in general justify

this assumption..

Sc ~DIPOLE

sc FACE I

It Pei

(2))

Figure 10: Geometry for the edge wave edge and vertex diffraction problem.

3.2 Formulation of the Physical Optics solution.

For convenience, let us restrict our attention to face 1 ("0" face) of the wedge.

The result for face 2 ("N" face) can be readily obtained by means of a simple

transformation. The field associated with the currents " (P) flowing over the face

1 surface can be evaluated via the radiation integral

i:I-~.LD~ff ~ exp (-ikoR),(31
"1'ileOOJ 4ffR

where 4' is the vector from QC pointing to the observation point, : (ic - P)IR

and R = Iic - ;'II (Fig. 11). The integratinn takes place over the truncated face

19



of the wedge. It is presumed that Jj(r') can be adequately approximated '.y the

actual induced currents as if the wedge was infinite, namely

JIl( ) 61 x 17eV'(?) IS) (3.2)

FIELD POINT

DIPOLE

oc(0)4

' SURFACE CURRENT
J(r.) ELEMENT

FACE I

Figure 11: Geometry for the asymptotic evaluation of the radiation integral of
the surface edge wave currents.

where fe='(r) is the magnetic field produced by the dipole radiating in the close

vicinity of the edge of an infinite wedge. The end point (vertex) contribution to

the surface radiation integral of eq. (3.1) is of interest here. For convenience, let us

introduce the oblique system of coordinates associated with the terminating edge

(edge (1) in Fig. 10), defined by the unit vectors

: ; i l 0sio1 - icosa l

so that:

r=f.j:i n a ; z=u-t1 cosa l

20



In the above equations al denotes the angle formed by the guiding edge and

the terminating edge (edge (1)) of face I of the wedge. The Jacobian determinant

of the above transformation is then found to be equal to

W) fina l

and eq. (3.1) results into the following expression:

Ej~i) -_El''(i.) T(ic) -jkoZ 0 sin ol

000 A0 X A X "(u,i exp (-iA0 R) dudil (3.3)
0 fojl(U'l) -4wR

The first term in the RHS of eq. (3.3) expresses the guiding edge (edge (0) of

Fig. 10) associated wave (edge wave) multiplicatively corrected by the transition

dyadic T(ic), due to the semi-infinite rather than infinite nature of the structure,

whereas the second term incorporates the edge (1) effect as well as the vertex

contribution. Thereafter, our attention is restricted to the second term only.

The double integral in eq. (3.3) can be reduced to a line integral along the

terminating edge, by considering the end point contribution with respect to the

variable u. A non-uniform asymptotic approximation readily follows after integra-

tion by parts. Next, a uniform representation is derived by heuristically introducing

the suitable transition function to the final result.

For large distances of the dipole from the terminating edge, using the results

of section 2.3, one observes that

MO,," j C(,)At,(p,') sin" l0

exp( sin(k0 4) cogo) (3.4)

in which

ro = sin2 al + (to,- fcosn + s'2
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sin e0 = t, sin aI/ro , cos 60 = (u - f Icos a +8€)/ro,

' is the distance of the dipole source from the vertex, and the constant C(v) is

defind by eq. (2.17). It is reinded that v = I/n, where 12 - n)-r is the wedge

angle. Also, (pl, 0', -a) determines approximately the location of the dipole with

respect to the corresponding cylindrical system of coordinates. Thus, eq. (3.3) may

be written explicitly

EI(i*c) - AP'(ic) . (€)+ ko+'Z 0 sin al(v) A(p',0')

0 j 0 0 0 A X (i sin00 + i Cos o) sie- 1 o

exp {-jko(R + ro)} du d1i  (3.5)
4wRr0

whence, integrating by parts with respect to the variable u, one obtains the (non-

uniform) asymptotic approximation:

E1(0 El g"(,' ).- T(F - jko'Zo sin' al

• Rxx i tj sinal +z (ac - €coal)]t -

exp {-jko(R + ro)l,=o}
4wRr'+' O(R+ro)Iuo(

It is well known that Physical Optics does not predict the correct edge diffrac-

ted field away from the geometrical optics shadow boundary. Therefore, it would

be reasonable at this point to be restricted into the vertex contribution of the

integral involved in eq. (3.6). Note that the latter is essentially a sum of integrals

of the form:

0 d7( 1 f-P- 1 (xpfjkg(lt)) a
J2 exp
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where G(t) is a slowly varying function of t and W(p) < 0. Such types of integrals

are evaluated asymptotically in Appendix A and result in expressions involving

the parabolic cylinder function of order p. Thus, the vertex diffracted field associ-

ated with face 1 of the wedge and predicted by the end point contribution to the

radiation integral of the Physical Optics currents can be expressed as follows:

,c) ' jkvZo sin al C(v)A'(p.,9k') {[ssin # lI,(ko)

41src+la(1 - cos')

-(sinf cos al + sin al cosfl cos ,) _,,_l(ko)],3

+ sinaj sin0 !O_j~(ko) $} . (3.7)

In the above equation, I°(ko) expresses the end point contribution to the integral

Ip(ko) = t - P- exp {-jko(R + ro)Iu=o} dt

which is examined in detail in Appendix A. For the specific semi-infinite wedge

geometry under consideration, the integral I°(ko) can be approximated by:

1(ko) ,,: r(-p)kp exp(-jp7r/2) exp{-jko(sc+ Si)}

Poallc C)](3.8)
[sin al sin# cos + cos al(1 - cos3)]P (

in which

al(s~c; sc) :z -sign(7r- - ) ' - s01) + (3.9)

and .s1, al denote the distance of the dipole source point and the receiver from the

origin Qe of the Keller cone of diffracted rays from the terminating edge (edge (1)

in Fig. 10). The branch of the bracketed expression in eq. (3.8) is chosen according

to

1)-P = exp (-jpr)
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Recall that eq. (3.7) furnishes a non-uniforn approximation of the corner

diffracted field associated with face I of the wedge. Moreover, this becomes evident

from the singularity of the field as the receiver approaches the s-axis ( --, 0). A

uniform approximation incorporates the coupling between the vertex and the point

source and mathematically implies the multiplicative introduction of tile function

F(2koLc sin 2  ) ; = e +C

where F(.) is the familiar edge transition function of UTD. The above expression

can be derived from the uniform asymptotic approximation of integrals, the inte-

grands of which involve a phase function presenting a stationary phase point (in

our case the dipole source) in the vicinity of an end point (the vertex i . It should

also be noted that the above transition function appears in the edge wave corner

diffraction coefficient obtained in 14].

3.3 The Physical Optics vertex diffracted wave.

Eq. (3.7) along with eqs. (3.8), (3.9) can be used to identify a vertex diffraction

coefficient associated with the Physical Optics currents flowing over the wedge

surface. Retaining only the dominant term in the expression of the vertex diffracted

wave (dominant with respect to the parameter 2k 0e') one obtains

&IPO1(ic) t exp{j(v - l)/2} r(v)C(v)ZoA(p',4 ' ) exp{-jko(sc + s4)1
V 4wscs"'

IC
,2);

cot - F(2koL, sin 2 012) F,0(i; 4)]
2 1 (cot i(l - cosO) + sin $ cos 01"

-+ (cot- 020 - cos13) + sin/3 cos(,, 7r (3.10

Eq. (3.10) can be rewritten in a more familiar notation by employing the follow-

ing expressions for the incident field m th'- ',rtP. Q" produced by the dipole I'
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radiating in free space:

{ £(Qc) } i O f~' {:
E '{Q¢ ex . -jooo 4 ,) ;

Then,

PIPo(4.) ft iPO(Z. ) (3.21a)

with

exp(jvw/2)r(v)C(i) E£(Qc)sin.v' + E,(Qc)cosvO'

ko sinl-"j '

-cot e F(2koLe &in2  I ,,~a(c A)
2 2' I (cot a(1 - coop) + sin#coo 0]"

+ F_,,[ko2(; a)] exp (-jkoec)
[cot a2 (I - cosj3) + sin j cos(n - )

(3.11b)

where oI, 02 are the angles formed by the terminating edges (1) and (2) and the

guiding edge (0) for faces 1 and 2 respectively and the parameters 61,2 are defined

by

*I,2(c;,c') = -ig"(w - 1,.2 - 01,2) h/(, + ,'4)- (81,2 + ,.2)l (3.12)

with a1,2' 1,2, as before, denoting the distances between the dipole or the receiver

and the origin of the Keller cone of diffracted rays from the edges (1) and (2) of

faces I and 2 respectively, while 01 ,02 are the elevation angles of the observation

point in terms of the edge (1) and (2) fixed coordinate systems. The transition

function FPc,,(.), which is examined in detail il Appendix B, is defined by

F-,(I) = exp (jr/4)(21r:)'' / 2 exp (Jlr/2) P- [exp (jr/4) 2 ] (3.13)
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where V7),,(.) is the parabolic cylinder function of order -V,. For large values of

its argument, Fc_,(IzI) reduces to unity, while it compensates the singularity of

the field when either Qe , QC or Qe ---+ QC (01,2 = Ir- 01,2). Furthermore,

after some elementary manipulation and according to a similar analysis in [81 the

approximation

31,2 + 81 ,2 : (ac + sc) - Lc 11 + cos(al, 2 + 01,2)] (3.14)

can be justified for large values of the parameter Lc, defined by:

L C - C C c (3.15)
SC + s64

so that:

, 2L cos 2 + 01, 2  (3.16)

Finally, noting that:

cos/3 1 = sina 1 sin3 cos-cos 1 cos3

and

cos 12 = sill o 2 sin0 cos(nw - 4) - coS 2 cos

eq. (3.11b) can be rewritten in terms of the edge (1) and (2) fixed coordinate

systems as

EcPO exp(jvw/2)r(v)c(v) E.(QC)sinfl' + E '(QC)cos V '

ko sin1 - /3'

/3cot F (2ko L c sin 2  A' ( cos10 F .- w'2k °L s s ( - rJ ) ]

22 ~ (CO (oaI + COS 13 "

sin 02 A2koLc Cos2  
_ e _ (-jk0,)

(cos 2 + cos132)v sC
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For the particular case of the plane angular sector (n = 2, v = 1/2 and a1 = 02 =

o, aI = a2 = a) eq. (3.11b) reduces to

E (Q" ) sin(O'/2) + E'l(Qc) cos(01/2)

V2-7r ko Vsin'

cot F(2koLc 2

CO s~in 2

.F 1/ 2r 4 ; 4)] exp(-jkoac)

C-Ota(I -cosi)+sin# cos S

and for the right angular sector (a = w/2) it simplifies to the following

Eco E .(Qc) uin(4"/2) + E;$Qc) cos(e/2)

*cot qF(2ko Lc sin2 '

F 1 2 [koLc(1 - VI - si21 c052 O)j exp(_jkcoac)(3)

Vsuin/3cos S

3.4 Numerical results and discussion.

The corner diffracted field described by eqs. (3.Ila)-(3.1Ib) does not satisfy

either the boundary conditions on the surface or reciprocity with respect to the

azimuthal coordinate. Both of these inadequacies are inherent with the Physical

Optics approximation of the diffracted wave. Besides, the asymptotic evalution

of the radiation integral required that the observation point was not close to the

surface of the semi-infinite wedge, where the direct dipole field (edge wave) is

dominant. However, the Physical Optics solution based on the true currents that

would flow over the surface of the wedge yields a satisfactory approximation of h,-

scattered field, provided that no diffracted rays from edges (1) and (2) reach thw

observation point. The latter corresponds to the case where 01,2 + 01.2 > w. A

remarkable fact is that the vertex diflrp,l, 6id i. d,,minantly 0-directed, which it

27



physically justifiable since the current is accumulated in the vicinity of the guiding

edge, flowing parallel to it. Note also that as a -4 w the vertex diffracted field

vanishes and the total solution reduces to the edge wave term as it should.

Ut

#1 #i" 2 -

4),4
I,

Figure 12: The square plate used in the numerical application of the Physical
Optics solution.

The radiation of a dipole in the close vicinity of a flat square plate (see Fig. 12)

is examined in Figs. 13-20. The dipole is located at a distance p' = 0.01A from

the center of one of the edge of a rectangular plate with dimensions 40 x 4A as

depicted in Fig. 12. The pattern is evaluated in the elevation plane associated with

the guiding edge fixed reference frame. rpu,-red at the point of projection of the
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dipole to the edge, for several values of the azimuthal angle 0 of the observation

point. In particular, the radiated field is approximated by the direct dipole field

(edge wave) multiplicatively corrected by the transition dyadic which is developed

in Chapter IV, and the superposition of two corner diffracted rays from the corners

of the guiding edge. Other possible diffraction mechanisms which may contribute

for small azimuthal coordinates of the observation point are neglected in the present

analysis.

The predicted radiation patterns are compared with moment method results

19). It is noted that moment method under those circumstances should not be

viewed as exact since its surface patch monopoles may not accurately approximate

the singular current flowing along the guiding edge as well as the strong coupling

between the dipole and that edge. As an independent technique, however, it yields

comparable results, which for certain aspects of observation show good agreement

with the Physical Optics approximation developed earlier.

The edge wave itself and the edge wave corner diffracted field clearly dom-

inale the total s-directed field in the paraxial region of the guiding edge. Both

mechanisms, however, decay as the observer is removed from the paraxial region.

The non-oscillatory behavior of the -directed field amplitudes (see, for instance,

Figs. 19, 20) also reveals that the corner diffracted contribution to that compo-

nent of the field appears indeed to be negligible. Besides, this component of the

radiated wave may be attributed to double edge diffractions or higher order terms

in the asymptotic expansion of the radiation integral of the edge wave currents.

The comparability of the moment method results and the Physical Optics so,-

lution deteriorates at small azimuthal angles. However, at these lower cuts other

secondary diffraction mechanisms (corner. dnuhle edge diffraction. etc.) may coun-

tribute significantly to the radiation paiern.
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CHAPTER IV

An Equivalent Current Approach

4.1 Introduction.

It was shown in Chapter III that the surface radiation integral can be asymp-

totically reduced to a line integral along the terminating edges of the semi-infinite

wedge. In other words, the high frequency radiated field can be adequately approx-

irated by the radiation integral of equivalent electric and magnetic edge currents

flowing along these terminating edges. In the Physical Optics approximation de-

veloped earlier, those equivalent edge currents asymptotically incorporated the

physical optics induced current effect.

Within tlhe frame of the Physical Theory of Diffraction 110,11,12] the scattered

field from a body can be considered as the superposition of the waves produced

by two current components flowing along the surface of the body: a uniform com-

ponent related with the geometrical optics field (physical optics currents) and a

non-uniform current due to the possible curvature or discontinuities in the curva-

ture of the surface of the scatterer (fringe currents). Hence, in the particular edge

wave vertex diffraction problem, the geometry of which is illustrated in Fig. 10, the

solution can be improved by superimposing to the uniform currents fringe current

due to the presence of the terminating edge discontinuity. In the context of our

asymptotic analysis the field is approximated by the radiation integral of the sull

of two types of edge (both electric and msanetic) equivalent currents: the first
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set corresponding to the uniform (physical optics) currents and the second incor-

porating the fringe current effect. The asymptotic reduction of the edge current

radiation integral involves a stationary phase point contribution (edge diffracted

wave) together with an end point effect. The former, as the origin of Keller's cone

of diffracted rays moves away from the vertex, and in the region that is illuminated

by the edge diffracted field, should normally reduce to the UTD solution, whereas

the latter is interpreted as a vertex diffracted wave.

The available representations of the edge equivalent currents are based on

the canonical solution to the infinite wedge problem or its asymptotic reductions

(Keller's Theory, UTD), which learly fail in the vicinity of the the vertex. How-

ever, the uniform asymptotic representation of the total field obtained from the

truncated equivalent currents radiation integral presents a reasonable qualitative

behavior and shows good agreement with moment method and measured results.

4.2 The equivalent edge currents concept.

The concept of the equivalent edge currents in the theory of diffraction, based

on Sommerfeld's half plane solution, was initially developed by Millar [13,14,15]

and Clemmow 116] as a simple method for deriving asymptotic approximations

of the electromagnetic wave diffracted by large apertures in perfectly conducting

screens. Later, the same concept was formalized by Ryan and Peters [17) and

employed to correct the singular GTD fields in the caustic regions. A UTD repre-

sentation of the Ryan and Peters equivalent edge currents for plane wave incidence

on a perfectly conducting wedge and for observation points sufficiently far from

the edge of the wedge, may be written in terms of the diffraction angle $0 . the

distance a of the observation points from the point Q of the wedge at which the

currents are evaluated, and the azimuthal coordinales 0, 0' of the diffracted and
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incident ray with respect to the edge fixed reference frame, as follows:

leq(Q) = - - ji (Q)' i(s; 0,';0) (4.1a)

Me9(Q) = -- i(Q) .im(s;4,';3o) (4.1b)
nko

with

{ ic;t,, } [ (i-+ ( '))F[kosa.+(O- 01)]m (s; 0'; 130 ) sin2 #0 1ot 2n

+ cot W( - f1 F[kosa-i( - 0 )]

(co (7 + (0 + 0')) F[kosa+(* + T'):!: cot 2n

+ ot7r- (0b + 0b') F[kosa-(O + 0b')]] (4.1 c)
+ cot. 2n

a = :(,)=2cos2 (2nwN:+ -. ) , (4.1d)

N1 being the integers that most nearly satisfy the equations

2wnN* - -Y = -W (4.1e)

and fr(Q), #'(Q) denoting the incident at Q electric and magnetic field, respec-

tively. As before, the parameter n (wedge number) is related with the wedge angle

(WA) via (WA) = (2-n)w. Note, also, that the edge transition functions F(-) are

not normally associated with the Ryan and Peters form. It should be emphasized

that Ryan and Peters equivalent currents are valid for directions of observation

lying on Keller's cone of diffracted rays. Knott and Senior (18] suggested a gener-

alization of the expressions of the equivalent currents in order to include arbitrary

directions of incidence and observation by deforming the term sin2 jo appearing in
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the denominator of eqs. (4.1a)-(4.1e) to the product sin# sin #1 with 13, 13' denot-

ing the angle of observation and incidence respectively in a predefined edge fixed

coordinate system. But their proposal is merely a postulate, since it is based on

intuitive symmentry considerations rather than any mathematical derivation.

Recently, Michaeli [19,20,21,22] proposed explicit expressions for the equiva-

lent edge currents deduced from the exact solution of the canonical wedge problem

and valid for arbitrary directions of illumination and observation. His currents are

related with true currents flowing along the wedge surface, since their derivation is

based on the asymptotic relationship between the Physical Theory of Diffraction

surface radiation integral and the equivalent current line integral.

Equivalent currents, including higher order interaction effects, were utilized by

Sikta [4] for the computation of the off principal plane RCS of flat plate structures.

Although Sikta used a modified version of the currents of eqs. (4.1a)-(4.1e), which

is conceptually empirical his results are comparable with those presented later

in [22] where the more rigorous Michaeli's edge currents were used. As pointed

out in Chapter I, Burnside and Pathak 13] employed the radiation integral of

the truncated equivalent currents to asymptotically identify a corner diffraction

coefficient after an empirical modification of the final result. A similar approach is

adopted in this chapter, using two types of equivalent currents, to develop an edge

wave vertex diffraction coefficient which incorporates the singular behavior of the

edge wave in the vicinity of the guiding edge and an edge diffraction coefficient

valid as the origin of Keller's cone approaches the vertex point.
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4.2.1 Generalized equivalent currents. The half plane case.

Non grazing incidence

A plane wave illuminates a half plane as illustrated in Fig. 2. The problem as

already pointed out is essentially two dimensional. The total field can be expressed

in terms of the vector potentials

=/a f o =(4.2)

via the following equations:

E -V XF- jWoVo( + k 02VV).A (4.3a)

H = V × A-jw0c(I + ko 2VV) • .F (4.3b)

where I is the unit dyadic. Furthermore, the total field can be viewed as a field

created by fictitious equivalent line sources flowing along the edge of the half plane,

so that one may write

V-00 ) = LI(,'z2)Go(p,z--2)dz '  (4.4)

f LI Mt(i;', ';z') Go(p, zz') dz' (4.5)

in which

GO(p,zI:')= exp{-jko (z - z2) 2 + p2} (4.6)

4r/(z - z') 2 + p2

is the free space scalar Green's function, ; is the vector pointing to the observer

in an arbitrarily chosen reference frame, P3' is the angle between the incident ray

and the wedge and the superscript I indicates the connection with the total field.

It is also reminded that the 0 and 4 -directed components of the electric and

magnetic field can be expressed in terms of its i-directed components as indicated
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mathematically by eqs. (2.1a), (2.1b). Thus, from eqs. (4.2)-(4.6), one obtains for

the i-directed components

00
Ez (s) =-jWOUO f0 L I(i,9;Z') Go(P'z1z')

+k 2 I-2 / ( ';z')Go(p,zlz')I1dz' (4.7a)

H k= e - 00 j{ME(;1,e;zt)Go(p, zjz)

which can be employed for a unique solution for It, M1. Noting the convolution

type of the integrals involved in the integral equations (4.7a), (4.7b) the latter

can be formally solved with the aid of the Fourier transform with respect to the

variable z (the z coordinate of the observation point). It is also remarked that

the principal value of the integrals involved in eqs. (4.7a), (4.7b) with respect to

the arbitrarily chosen origin on the i-axis should be considered, along with the

definition of the Fourier transform [23]. Without presenting the details of the

derivation and restricting our attention to the diffracted term of the total field,

which is physically related with currents flowing in the vicinity of the edge, one

obtains the following expressions for the edge currents:

{ II(g;/3',4 /;z') _ 2exp(-jir/4)

M f(i% 13', 0';z JoV1~
exp(-jkoa sin O sin /')

sin P sin P H 2)( kos sin /3 sin ')

J 1o E(w-) • i i If(. , 0'; z') (4.8)

zO39(z,).iM;(A O;;)
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Now, the superscript f indicates relation with the diffracted field and the distance

a is related with the radial coordinate p via p = e sin/3. Moreover,

if (i/,#z) _ , JFE2ko. sin/3sin/3'cos2 (')I
nf( /', q$; z') Cos o

TF(2los sin P sin #'os (F-)] 4.b

Cos

Note that the same result can be obtained by merely dividing the diffracted field

with the two dimensional free space Green's function. For large arguments of the

Hankel function and if the origin of the i-axis coincides with the diffraction point

Q' the equivalent edge currents reduce to Ryan and Peters expressions presented by

eqs. (4.1a)-(4.1e). One can modify the above expressions for arbitrary directions of

incidence and observation and spherical wave incidence by substituting the factor

sin 2 j? appearing in the denominator of eq. (4.8b) with sin/ sin,/' and s with tne

distance parameter L = a *9/(s + s'), where a' denoting the distance of the source

from the point Q at which the equivalent edge currents are evaluated. Then, for

large values of the parameter L, one obtains

{ 11(Q) - Y°Ei(Q)-ii(L;# '1 0') (4.9)
Af(Q) (4 Zofa(Q).9a)(;#,0;fl,,0/)

where now

if(L;} F[2kL sin 3 sin .'.os2
m f ii-r0 -ai n131Cos(0-461

Fj2k0L sin 13sin $1 o 2 (.~i

and i is again the unit vector tanizen, 14v to,, edtp of Q.
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The perturbation of the original expressions (4.8a), (4.8b) is based on the

same arguments stated by Knott and Senior and has no mathematical justifica-

tion. Evidently; the above representation can be generalized for the wedge case.

The final result is merely a symmetric perturbation of Ryan and Peters edge cur-

rents. It should be emphasized that asymptotic evaluation of the radiation in-

tegral of the edge currents described by eqs. (4.9a)-(4.9b) over a finite (possibly

curved) edge yields always a reciprocal result and the correct field for observation

directions in the Keller's cone of diffracted rays. Besides, the more general expres-

sions (4.8a), (4.8b) can be used for corrections in caustic regions in the near field

of the wedge where the GTD related Ryan and Peters equivalent currents fail.

Grazing incidence

An interesting case arises when the incident plane wave grazes the edge of

the half plane (fl' -* 0). The equivalent edge currents that would support the

edge guided wave given by eqs. (2.13), (2.14) can be derived following a similar

procedure. However, in this case, the integral equations (4.7a), (4.7b) as 0 - 0

yield an indeterminate form which implies an infinity of solutions for the unknown

edge currents. This ambiguity originates from the fact that grazing plane wave

incidence is essentially a theoretical idealization. Nevertheless, based on the dipole

excitation problem examined in Section 2.3, one can obtain expressions for the

equivalent currents which are physically reasonable. Beginning with the integral

equations:

,e = 0'; ?) Go(p, zIzl)]

&P41
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EVUI -L { (Afe (i/I,,0; z,) o0(, zlz,)]

0 - "01 ( , 0i; e) Go'}(,,

as 0?' - 0, one may postulateIPeLj/9,,;z 8exp(jir/4) VpSo(fl',qS')

SMeu,'(;3,4';z) J - H(2)(kopsin3')

{x(j--- YO sin(0/2) (4.11)

e cos(0/2)

where

SOW I ) Eo)E0 sin(O'/2) + Eo, cos(O'/2) (4.12)

is an excitation related factor.

4.3 Michaeli's edge currents in an oblique edge fixed frame.

For the general wedge case one obtains the following equations for the total

edge magnetic and electric equivalent currents excited at the point Q of the edge

of the wedge 119]:

I ) .2jYO sin(O'/n) 1
I(Q) E(Q i nko sin 2 d3 cos[(7r - yl )/n] - cos(O'/n)

+ I -l() 2i
cos[(w - 72)/nJ + cos(O'/n) ) nko sin.'

_sin[(r - _)/n_ pI cot/0' - cot/Jcos#
{ il-,In coS(ir - -yl)/n] - cos(,'/n)

sin[(wr - 7 2 )/n] P2 cot3'O - cot 3 cos(nw - ) (4.13a)
sin 72 cosI-7( - "2)/n] + cos('/n) 4

M(Q) = R i 2j Zo

nko sinj3 sin/4
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J si-l(w - "yl)/nl] sin
5lsj'ri {cos!(w - 11/l- cos(0'/n))

sinl(nw - "V2)/11] sin(nw - ') (

-sn (-02(W - 1.2V + cos(/n) (4.b)

where the complex angles 71,2 are defined by the equation

aO I  FACE I£N

Figure 21: Oblique edge fixed coordinate system for the definition of Michaeli's
equivalent currents.

-y, -hn(pu,2 + ~IF 1 ;7 (4.14)

along with the following choice of the branch of the square root in eq. (4.14):

e>l

-I-,23 < i
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The parameter p depends on the coordinates/3, € and )3', 0' of the observer

and the source, respectively, in terms of the edge fixed reference frame centered

at Q as well as the choice of the edge fixed system of coordinates itself, i.e., the

angle a between tbe unit vector i tangent to the edge at Q and the unit vector

& tangent to face 1 of the wedge at Q, as shown in Fig. 21. The latter implies

a nonuniqueness in the presentation of the Michaeli's equivalent currents. For a

general a angle, ul is found equal to
sin a sin/3 cos + cos a (cos/3 -cos/3) (416)

sin a sin .'

For the definition of P2 which is associated with face 2, 0 should be substituted by

n " - 0 and /3, /3' by 7r - /3, ir - f3l, respectively. If the classical edge fixed system

of coordinates is chosen, then a = ir/2 and j 1 becomes

1L(-/2) = sin/ocoso/sin/3' (4.17)

On the other hand, if the a-axis is chosen parallel to the diffracted ray that

grazes face 1 surface, as suggested by Michaeli in [201, -.e., when a = f' from

eq. (4.15) one obtains
(A I sin/3 sin 0'cos0 + cos 0'(cos/3 -cosfl') (4.18)

sin 2  

(4

For a more systematic approach to the approximation of the edge wave vertex

diffraction mechanism, it is convenient to extract the physical optics components

from the total equivalent edge currents presented by Michaeli. In accordance with

124], the total currents given by eqs. (4.13a), (4.13b) can be split into the Physical

Optics current components MP, I p ' and the fringe current components Mf, If

with

I(Q) = IP(Q) + if(Q) ; M(Q) = MP°(Q) + Mf(Q) (4.10)
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Specifically, the Physical Optics components associated with face I of the wedge

are given by the following equations:

* 2j U(w - 0') sin 0'

Ir(Q) kosini3?'(pl + cos 0) / i(Q) iZosin3'
-17 i(Q) .i (cotI3' cos 0, + cot 3 cosS)] (4.20a)

2jZo sin 1 1(r - 4') (4.20b)
MIP(Q) k sin3 sinf3' (pI + cos 4)

while the fringe currents can be derived from eqs. (4.13a), (4.13b), (4.19)

and (4.20a), (4.20b).

4.4 Vertex diffraction of an edge wave excited by a dipole.

An excitation dipole is placed in the close vicinity of the edge of a semi-infinite

wedge and at a distance a' (with k0s4c >> 1) from its vertex. The interaction

between the dipole and tli- edge produces an edge guided wave which, sufficiently

far from the dipole, can be treated as ray optical. This ray optical edge wave

is diffracted in ,ccordance with the generalized Fermat's principle. In our case,

despite the direct field which is essentially the edge wave suitably modified for a

seni-infinite structure, the observer is reached by a vertex and, possibly, two edge

diffracted rays emanating from the vertex point QC and the terminating edges

points Q', Q', respectively, where Q', Qc are the origins of the classical Keller's

cone of diffracted rays. The observer is in the illuminated or shadowed region of

the edge wave edge diffracted fields from the points Qe, Q', if Q", Q are points

of the semi-infinite edges (1), (2) or points of their extensions, respectively.

A uniform solution is investigated herein using the equivalent currents de-

scribed earlier in this chapter and exited by the edge wave impinging on the

terminating edges (1) and (2). The "uniformity" of the solution requires the con-

tinuity of the total field at the shad, . boundary of the direct field (edge wave)
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and the boundaries of the regions illuminated by the edge diffracted rays from

Qe, Q'. Furthermore, the solution should remain finite at the extension of the

guiding edge. One may write for the total field

Tt Eeu.(+eUQ)+EU(t)+c (4.21)

where ge, is the field produced by the dipole in the presence of an infinite wedge,

T is a heuristic transition dyadic which assures the continuity across its shadow

boundaries and its finiteness along the extension of the guiding edge, Ee,2 are the

edge diffracted fields with tQ1, 2 denoting the t coordinate of the points Q1,2 in

terms of the edges (1) and (2) fixed coordinate systems depicted in Fig. 10, and

.C is the vertex diffracted wave. It is reminded that U(-) represents the unit step

function ([1(r) = 1 if z > 0, U(z) = 0 if T < 0).

As before, our attention is restricted to face I of the wedge. The equivalent

currents presented earlier for grazing edge wave incidence at the point Q1 of the

edge (1) may be rewritten as

I2(Q j) = Hc'(Q1 ii(ic; ti) (4.22a)
2o 2

2joHei(Q)f -
M1(Q 1) = -2 ( 'C;fl) (4.22b)/c0 2

where eU'(Ql) is the field produced by the dipole radiating in the presence of

an infinite wedge evaluated at the point Q1, i1 is the unit vector tangent to the

edge at Qi and il, ml are known and, in general, slowly varying functions of the

observer's location in the vertex fixed coordinate system and the distance of Qi

from the tip QC of the trihedron. The wedge number n ! is related now with the

wedge formed by face I and the plane surface defined by the edges (1) and (2).

Note also that a factor of 1/2 has been introduced due to grazing incidence. It can
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be easily shown using eq. (2.19) and the relationship

Jeu,(r) = y,0 x kv()

which is valid for ray optical waves, that

l(Q1 ) .ii = -jk' sin' al C(v) Ae(pO,4) Siexp(-jkorl) tv_1 (4.23)

with

r = s'2 + t.2 - 2 1 ws . (4.24)

As before,

A ,(p, 4') fp"(p,, sin ,4/ + p ,cos ,,)

and the constant C(v) is defined by eq. (2.17).

It is presumed that the edge and vertex diffracted edge wave associated with

face I of the wedge can be approximated by the radiation integral of the equivalent

currents J,(Qj), MI(Qj) flowing along the edge (1), which in the Fresnel or the

Fraunhofer region of the edge can be explicitly written as

) t-, jk Zo sin" ',('IC,) + (P,, 0),",

. exp{-jko(R + r)} dt1  (4.25)

4wRrv+I

with R = 1i~c - t1ill and = (ic - flil)/R

For large values of the parameter k0 the asymptotic evalution of the radiation

integral reveals a vertex contribution and, also, an edge diffracted term. if

¢osal (I -Cos$) + sinol ,sin$ cosO > 0.

i.e., if Q" lies on the edge (1) itself rather than on its extension. These two terms

are examined separately in Sections 4.4.1 aI 4.4.2 respectively.
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4.4.1 Edge wave vertex diffracted field.

Interpreting the end point contribution to the radiation integral as a vertex

diffraction term,'one obtains the approximate relationship

Ec(4c) jk'ZO sin'IoaA,(ph,P,) exp{-ko(sc +4))4wsc aJ'

• c(c ) P,( k) (4.26)

where we have substituted

O ()= ;C X ;C x i1 i I P; 0) + ;C x il M1 (;O;) (4.27)

and I°_,,(ko) denotes the end point contribution to the integral

0I° t - 1 exp{-jko(R + ro)} dti .

Referring to eq. (3.8) one writes

Jv(ko) : r(v)ko" exp(jvzi/2) exp{-jko(sc + 4))
FCjukoG~c sc )] (4.28)

[sin aI sin/3 cos 0 + cos a1 (1 - cos/)(4

in which the edge wave transition function has been defined by eq. (3.13). The

vertex diffracted field associated with face I of the wedge becomes

1(ic) :t exp{j(v + 1)w/2)r(v)C(v)ZoA(p,') exP{ -jk(c + 4'c))
4wscs'v

FC,,jko2(;(.

" jIV() [cot oI(I -cosI)+ sin cos] (4.29)

Michaeli's equivalent currents

It has been pointed out that Michaeli's equivalent line sources can be derived

from the asymptotic reduction of the surface radiation integral of the true surfac,-

currents evaluated from the cnoiinirI P.,I',inn rid flowing over the faces of the
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wedge and can be split into geometrical optics and fringe current components.

Moreover, when these currents are truncated to reveal an end point effect, one

should be cautious about the choice of the parameter p involved in the expressions

of these currents, i.e., the choice of the edge fixed coordinate system, so that the

terminated equivalent edge currents represent correctly the end point effect of the

truncation by the edges of the trihedron true surface induced currents. In this

context, a correct choice of the parameter Pl for the Physical Optics component

of the equivalent currents, using eq. (4.16), is the following:

PO = sinal sinl 1 cosoi, + cosackl(cos 1 + cosal) (4.30)
/Al 'U ( Cti)sin 2  a lI

so that the unit vector & in Fig. 21 is parallel to the guiding edge, whereas for the

fringe currents the proper choice is

A f = A(7r - a~l)= sin alsin #1 cos 1 - cscl(cospl + cos al) (4.31)
sin 2 a I

and, now, & is parallel to the edge diffracted ray from QC that grazes the plane of

face 1. In the above equations /1, 4'1 are the elevation and azimuthal angle of the

observation point in terms of the -'Age (1) fixed coordinate system centered at QC.

The previous discussion also suggests the decomposition

c= 'P() + ' (ic) (4.32)

where the superscripts po and f imply connection with the physical optics and

fringe current components, respectively. Not surprisingly, using eq. (4.30) for the

definition of the parameter it in the eq,. (1.20)-(4.20h) of the p:yical optics

equivalent edge currents and after some tedious manipulation, which, however,

involves only elementary operations, it can be shown that:

1, (Sc) = -,6 cot 2 (4.33)
2
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so that the vertex diffracted field assumes the approximation

c(') . gc'P(j'c) + &cf'() (4.34)

in which Ec,PO('c) is the field given by eq. (3.10) or eqs. (3.1Ia), (3.1fb), while the

fringe currents related wave is equal to

chf('c) : exp(j(,+ I)n/2)r()c(v)ZoA (p',')
exp{-jkO(ac + a,)} 2(2k0L 2

4wsc a' 2

* [£f(i-c) FT-AkOaif(c;.s4)1
(Cot ( - cos P) + sinO cos]ig
+-, ' '(c) F - 2 St(S;'Cl ] (4.35)

[cot 02( - cos/3) + sini Pcos(n" - 0)]"

The vector functions di"l(;',) (V = 1,2) are related with the Michaeli's equivalent

currents at QC via the equations:

Ifc'- = xf c ic X f + MACcX ! (4.36)

where

{ (Qr) } I ) { 1) (4.37)
M(Q) MaO C)  mfowc)

and i( Q) , ( Q), i), f(Qc), mfo(Qc) are described explicitly by the expressions

I P f cotat+cot/3gcos i sin[("-"ui)/n/]
)= ,sin at sin 1 - Cos[(w -

P cot e t + cot 01cos(nr - 4)) si,,I(w - 1l,),'-I]

+ il '12 1 + cos(ir - 1120d/"11 J

(4.38)



S1(QC) I !in j sin[(w - )/-i]
n(c = -sin alsinI sin)-l I - cos[(r - -yg)/n
sin(n1l - 0) sinl(w - 712)/nI (4.9)

sinl7 12  1 + COS!(,r - 712)/nj]J 4.9

and

RO(QC) = cot 01 - cot #! coo 01 (4.40)I sin &I (1 + #)

m'(QC)sin - (4.41)
sin asin 01 (1 +,4)

The index I assumes the values 1 and 2 for the edges (1) and (2) of the trihedron,

respectively. The elevation and azimuthal angles 81,2, 01,2 of the observer in terms

of the coordinate systems associated with the edges (1) and (2) and centered at

the tip QC are related with the principal spherical coordinates , via the easily

verified equations

cos/31 = sinol sin# coso - coal cosP;

sin #I = I 1 cos2 11 (4.42)

cos 02 = sin o 2 sin ft cos(nt - 0) - cos 02 cos;

sin 02 = I41 - €os2,011 (4.43)

Cos 1  1 Co0j1 -C5 UD IC ,

sin = sin(4.44)

sin 1

In accordance with eq. (4.31) the paraineler. p, ge should be chosen equal to
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= sin at sin l1 cos 4' - co at(cos80L + cos at) (4.46)
Ali sin 2 at

j sin ai sin, 1 cos(nr - 4i) - cos ol(cosBj + cos ai) (4.47)

1 sin2 *I

The above expressions simplify considerably for the case of the plane angular sector,

with ell = a2 = a ,al = 2= a. Without presenting the details of the derivation

which again involves only elementary manipulations, for the field related with the

fringe currents one derives

)z-jzo ApIto) exp{-jko(sc + set)}

20 c'(c;) )l2-o( c; 8)](.

F(2koLcsin2 (4.48a)
2 ot -,,(I - Cos p) + sin 0 Cos 0

where the function Gc'(i'c) is given by

________cow, #) + 4 co,)]
04' ='c cos(2o) + cos 6 si# + sin2 a sin # cos(6/2)

(4.48b)

with

cos f = sin(2a) sin P cos - cos(2a) cos 3  (4.48c)

= (cosa +cos )(sin0cosCos#+W asin P)

•(sinacos#1(1 -cosocos1)-cos2 asinl61]

+ 6i15 a sin 0sin 4! (4.48d)

e#($,O,)= sinasino(coso +cos/3 )

• sinacos (1 - coso cos/I) - 2 a siui311

+ sin 4 osi 01 (sil 0 COS I Cos ,+ cos a sin j) (4.48e)

52



and the angles /lj, 01 are defined by eqs. (4.42), (4.44) for al = a.

For the particular case of the right angle angular sector (a = 7r/2) it readily

follows that

/2) = (3 (cot - csc (4.49)
2 2

and the total corner diffracted field assumes the simple representation

-jZo exp{-jko(sc + 4.)}
EC~Gic) 2 Ae(pI,4/) 47rcV 8'

F(2koLc sin 2 q) FC1 /2[koLc(1 - 1 - sin 2 #3 cos 2 q5)]

sin Vs T/in co s

(4.50)

where Ae(pf , 0') is defined by eq. (2.21). In a more familiar notation

1 4 (Qc) sin f- + E f, (Qc) cos

F(2koLc sin 2 q) F-! 1/22koLc(l - V1 - sin 2/ co s 2 #)

sin Vsin Cos
exp(-jkoc) (4.51)

Sc

Geneneralized equivalent currents

The vertex diffracted field derived with Michaeli's equivalent currents has a

clear physical interpretation in that it is essentially the field produced by the super-

position of the truncated physical optics currents that would flow over an infinite

wedge and the fringe currents excited by the terminated edges for edge wave grazing

incidence. However, it does not satisfy the boundary conditions on the trihedron

surface. Although the latter may be a minor concern for Fraunhofer region obser-

vations, as far as the earlier derived equations serve as a good approximation of the
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region observations, as far as the earlier derived equations serve as a good approxi-

mation of the vertex diffracted edge wave, it would be interesting to obtain a vertex

diffraction coefficient which would satisfy the appropriate boundary conditions on

the surface of the trihedron. For this purpose one may introduce the generalized

equivalent currents described for the half plane case by eqs. (4.9a)-(4.9b). The

approach is essentially empirical since the generalized equivalent currents are not

necessarily related with true surface currents, but merely is a symmetric perturba-

tion of the edge currents that would produce the correct edge diffracted field fronl

an infinite edge.

For simplicity the plane right angular sector rather than the complex trihedron

problem is examined. The total vertex diffracted field is related with the end

point contribution to the radiation integral of two equivalent line sources: the first

associated with the guiding edge (edge (0)) which is grazed by the dipole excited

field and can be derived by a heuristic modification of the currents of eq. (4.11),

and the second associated with the terminated edge (edge (1)) and evaluated from

eqs. (4.9a)-(4.9b) for edge wave incidence. The edge wave equivalent currents given

by eq. (4.11) are clearly valid only for plane wave incidence which is also evident

in their ko 1/2 dependence rather than the ko 1 dependence of Ryan and Peters as

well as Michaeli equivalent currents. The empirical modification concerned with

the edge wave dipole excitation problem involves a multiplicative introduction of

a "reflection coefficient" similar to that suggested by Sikta in (4], namely

Rev ,  exp(-jw/4) (4.52)

as well as the multiplication by the edge wave transition function

20
F< 1/2(2kcoLc sin 2
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which assures the finiteness of the total solution as -- 0. The corner diffracted

field associated with the guiding edge is then equal to

- E SC3j E4 (Qc) sin 4'+ E,(Qc) sin~
-v2 4'kO Vsin) .sin #I

sin + Co F(2ksLcs
2 2 sin

-F 1/2(2koLc sin 2 0 ) (4.53)

Note that the field exhibits a similar qualitative behavior with the edge wave corner

diffracted field derived in [4] from a limiting manipulation of the corner diffraction

coefficient. The term associated with the terminated edge is written

2 (Qo) sin - + E sn (Qc) cos

•(/ sin 0 + 4' cos P cos 4) F(2koLc sin2 # co82

sin #1 cos

FC1 /2[koLc(1 - 1 - sin 2 #cos 2 ()5

Vs~in -os 4

The total vertex diffracted field, however, cannot be simply obtained from the

superposition of E and EJ, because the effect of the truncated currents may be

double counted. Therefore, a modification of the final expressions is necessary in

order to obtain results compatible with those presented earlier.

Although the new expressions for the field satisfy the appropriate boundary

conditions on the half plane, they exhibit a discontinuity on the plane of the sector

as the boundary # = 0 is crossed, i.e., the field has a definite finite value as

# - 0 on the r = ir half plane, while it vanishes on the 4, - 0 semi-plane. This

inadequacy is also present in Sikta's expressions of the edge wave corner diffracted

field. Note also that the field expressions exhibit a 4-directed component which
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does not vanish, as it should, on the plane of the plate. The same problem occurs

in the expression of the corner diffraction coefficient and is coherent with the

nature of the truncated equivalent currents which are derived from the half plane

solution. It can be possibly overcome by incorporating higher order interaction

effects between the currents flowing along edge (1) and the adjacent edge (edge

(0)), which, however, appears cumbersome.

Qc DIPOLE

"/ / 1200

Figure 22: Angular sector geometry for the comparison of the generalized and
Michaeli's equivalent edge currents.

The generalized equivalent current field associated with the edge (1) (GEC

(1)) is compared with the Michaeli's current (MEC) and Physical Optics (PO)

solution in Figs. 23 through 28 for an angular sector with a = 1200, the geometry

of which is shown in Fig. 22. The direct dipole field is not incorporated in Any1

of the above calculations. The singularity of the field predicted by the Physical

Optics solution is evident in Figs. 23 and 2.5. The three approaches show good

agreement for small values of the elevati,,1 nilngk id and sufficiently far from the
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plane of the angular sector. At 40 = 1800 the generalized equivalent current field

presents a non-vanishing 4-directed component, which is not physically acceptable.

However, it satisfies the boundary conditions on the sector surface. The solutions

diverge at the vicinity of the guiding edge (i.e., when P -4 1800). But in that

region the total field is dominated by the singular direct dipole field (edge wave).
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4.4.2 Edge wave edge diffracted field.

In the general wedge problem the point QO lies on the semi-infinite edge (1) if

cot o(I - cos13) + sin/3cosq > 0.

The angle of diffraction fle in this circumstance is defined by the equation

sin -1= c s(4.55)

where

s8 = ji + s 2 - 2t1Q s4cos a l  (4.56)

and the distance tQe of the point Qc from the tip QC is given by

= cSal sin(al + 01)
1 4.91= s5sinaI + acsin/ 3 1

The non-uniform representation of the edge diffracted edge wave from QI

(non-uniform with respect to the singular behavior of the impinging edge wave as

well as the discontinuity at the boundary of the illuminated by the diffracted field

region) can be obtained either using UTD or, equivalently, evaluating the isolated

stationary phase point contribution to the radiation integral of the edge currents.

(Note that both types of equivalent currents utilized earlier for the approximation

of the vertex diffracted field result in the Ryan and Peters equivalent currents when

evaluated at the point Qe). For instance, employing UTD the edge diffracted edge

wave reads

,ru(Qe exp(-jr/4)
1 )2n i 0/r o sinfl"

cot. F(koLja'(,j)jF(o In )' I)

+cot ('--) FjkoLa-(0)1]
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" 8 )exp(-jkoql) (4.58a)
SI +8aj)

where

L I - *IB'ill (4.58b)

and

= - ac cos, (4.58c)

The incident edge wave V' can be derived from eq. (2.19) and is given by

Ee#r(Qe')I = jk'ZO C(v) A"(p ,1) i s t, I e __ _,SD

0 0Q1 1 (4.59)

Note, also, that a factor of 1/2 has been introduced into eq. (4.58a) due to grazing

incidence [25]. Clearly, as Q - QC, E(11 .) becomes infinite. The singularity of

the field in accordance with the development in Appendix A can be compensated

with the multiplicative introduction of the transition function

Fv_ I ,2k 0 Le, cos 2 (tci I + 3,

where

&-1 () = j -(')" (4.60)

with the star 4enoting complex conjugate. The large parameter Le, equals

Lei = (4.61)
8l + '

Besides, the same modification factor insures the continuity of the total diffracted

field (edge and vertex difracted waves) at the boundary plane

coso( -cos 3) + si I sin. 3 c,. ' = 1) (4.62)
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To illustrate the resulting continuity of the diffracted field at this boundary the

particular case of the plane angular sector (v = 1/2; a, = a) is examined. In this

circumstance the proposed uniform approximation of the edge diffracted field may

be written in the following manner:

ZoAe(P7',40) F.,Of sin a + ac sin #I
(Sc) = 47r2 %5i-no cs (a i ++ 8)

F(2koLe sin2 pe cos2 Oi) '. 1 2[2k 0 Lecos 2 ~)
sin IVcose vsin(a+?)

(4.63)

On the other hand, using the fact that Michaeli's equivalent currents reduce to

those of Ryan and Peters at the origin of Keller's cone of diffracted rays, or alter-

natively employing eqs. (3.18), (4.34), (4.48a)-(4.48e) (for a = al), it can be easily

shown that the corner diffracted field, as Qe - QC, equals

jZoAe(p, 0 ' ) exp{-jko(sc + 4c)) F(2hoLesin2)

4CoCos

1[1 2 [2koLc cos2 (0+&)1
lim 2 - (4.64)

01 -..r-o +Cos '

Then based on the definition (3.13) of the edge wave transition function and the

relationship (4.63) it is trivial to show that the total diffracted field remains con-

tinuous as the boundary of the region illuminated by the edge diffracted field is

crossed. The transition function F,'-,(.) for the general wedge case appears as a

type of caustic correction factor in the sense that it compensates the singularity of

the edge diffracted field at the extension of the guiding edge. However, in our case

the singularity arises from the behavior of the incident field on the edge rather

than the focusing of the diffracted rays into a caustic.
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4.4.3 A transition function for the guiding edge diffracted field.

As pointed out in Section 2.5 the rigorous solution of the radiation of a dipole

in the presence'of an infinite wedge predicts a singular field at the edge of the

wedge, in consistency with Meixner's edge condition. However, this singularity of

the edge wave is not physically acceptable in the extension of a semi-infinite edge.

For overcoming this discrepancy the multiplicative correction of the edge wave

associated with a semi-infinite or finite edge with the use of a suitable transition

function (in general transition dyadic) has been suggested. Such a transition func-

tion can be empirically derived by requiring the continuity of the total field at the

shadow boundaries of the direct wave (edge wave), namely at the planes 01,2 = i'.

This continuity was guaranteed by the UTD evaluation of edge diffracted field as

expressed by eqs. (4.58a)-(4.58c), but it is violated in the paraxial region after

the introduction of the function F _1 , which assures the uniformity of the total

diffracted field. Obviously, the edge wave can be multiplied by a similar transition

function so that the total field retains its continuity in the paraxial region as well

as outside of it, where the transition function receeds to unity. In addition, such a

multiplicative correction would yield a finite total field along the extension of the

edge.

The edge wave contribution to the total radiated field by the dipole-trihedron

configuration is given explicitly by eq. (2.19) which, for the half plane case, reduces

to eq. (2.20). For the plane angular sector, a convenient modification of the edge

wave reads:

() vi Zoexp(jw/4) X(p j
- 2wV ~ ApI4)

• 10 cost 0 sin(0/2) + 4 cos(0/2)]
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! [2koLe sin- exp(-jkoo) (4.65)

with so denoting the distance of the observation point from the dipole and Ilo is

the elevation angle of the observer in the guiding edge fixed coordinate system

centered at the point of the projection of the dipole onto the edge. The continuity

of the field at the boundary 4, = 0, r = is shown trivially by noting that, for

= 0, f0 = 7r - a-

4.5 Discussion and numerical results.

The edge wave vertex diffracted field is a higher order term with respect to

the large parameter k0 in the asymptotic solution of the radiation of a dipole in the

vicinity of the edge of a trihedron. Nonetheless, it contributet significantly to the

field especially in the paraxial region of the guiding edge and along its extension.

And its major contribution concerns the /-directed component of the field. The

latter, as pointed out in the discussion of the Physical Optics solution, is due to

the accumulation of electric current flow lines in the vicinity of the guiding edge

excited by the ray optical edge wave, which is consistent with the theoretically

predicted singularity of the field as the edge is approached.

The solution based on Michaeli's equivalent currents is essentially an asymp-

totic PTD approach, in that a fringe current effect due to the terminating edges is

added to the uniform edge wave curreuts. The rigorness of the approach may be

questioned at this point, since the derivation of the fringe edge currents assume an

infinite edge and uniform plane wave illumination. However, the field is expected to

retain its singular behavior in the vicinity of the vertex, which, moreover, does not

contradict the "tip condition" (i.e., the behavior of the field in the neighborhood

of a vertex) as investigated rigorously by several authors. Besides, the addition of
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the fringe current to the physical optics current effect improves the total solution

as shown in Figs. 29-34, where these results are compared with moment method

ones. It should be emphasized that the solution attempted in this chapter by no

means presents a complete rigorous representation of the tip diffracted field, but

it merely includes the information of the truncation of known components of the

currents flowing over the edge surface and can serve as a good engineering approx-

imation to the problem. Again in a PTD context the completeness of a solution

requires the addition of a vertex current component, i.e., a current excited by the

vertex of the trihedron, which however remains unknown and it does not appear

possible that it can be extracted from the rigorous solutions [1,2].

Comparisons of the calcualted field (denoted as MEC on the graphs) with

moment method results (MM) are made in Figs. 29-34, for the square plate shown

in Fig. 12. The direct edge wave (EW) properly modified in accordance with the

discussion in Section 4.4.3 is also plotted so that the effect of the corner diffracted

fields is better illustrated. Note that in Fig. 29 the edge wave edge diffracted wave

has been added to the direct dipole field (EW+EWED).

The field evaluated with the equivalent current method shows good agree-

ment for those flat plate geometries where the dipole is placed in the close vicinity

of one of the edges of the plate and sufficiently far from its corners, especially

in regions where contributions from other diffraction mechanisms other than the

corner adjacent to the guiding edge are known to be negligible. This becomes

evident in Figs. 29-34, where the agreement between the moment method daa

and the calculated field progressively improves for larger values of the 4, angle. In

fact, for 46 = 600, other mechanisms such as diffraction from the remote corners

of the square plate as well as double and triple edge diffraction may contribute

significantly, while their effect diminishes as 4 -. 1800. Our approximate analysis
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also improves when the paraxial region is approached (8 --+ 0), where, as a matter

of fact, the total field is stronger. The latter justifies the validity of the asymp-

totic analysis which resulted into the multiplicative introduction of two transition

functions as well as the choice of the correction factor for the direct dipole field.

Unfortunately, the q -directed field does not exhibit an analogous agreement basi-

cally because the analysis does not include secondary mechanisms which clearly

contribute significantly to the pattern of that ,olarization.

The results also reveal a small variatio', of the total field with respect to the

azimuthal coordinate (angle 0), in contrast with the relative large changes of the

calculated pattern in the elevation plane. The 0 dependence becomes significant

only at lower cuts where the contribution from the opposite edge and its two

adjacent corners is appreciable.

The second example examined involves also the radiation of a small monopole

in the close vicinity of one of the edges of a rectangular plate, but now in differ-

ent distances from its corners. The geometry of this monopole-rectangular plate

configuration is depicted in Fig. 35. The calculated field is compared again with

moment method results as well as measured data, as shown in Figs. 36, 37 on the

azimuthal planes 4 = 1800 ,  - 1500, respectively. The accuracy of the measured

data deteriorated for measurements in smaller azimuthal angles, where the support

of the structure influenced significantly the measured radiation pattern. In Fig. 36,

a ram has been placed around the remote corners and the opposite edge of the

rectangldar plate, so that their effect in the total pattern is reduced. Clearly, the

agreement is better in this case (Fig. 36), in contrast with the results of Fig. 37

where the ram was removed.

It should be noted that neither the Physical Optics solution nor the equivalent

current formulation are expected to yield accurate results for small angular sector
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angles (a << r/2). In this case a strong coupling between the two edges forming

the sector occurs, which is not encountered in the evaluation of the radiation

integral of the currents flowing along the edge (1). Moreover, when a --+ 7r, the

Physical Optics corner diffracted field vanishes and the total solution reduces to

the edge wave over an infinite wedge, whereas the same property is not true for the

equivalent current formulation of the vertex diffracted field. The latter, therefore,

fails in cases of very wide angles, which require a more careful treatment.
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CHAPTER V

Conclusions

The major objective and motivation of this study was to describe approxi-

mately the edge wave diffraction mechanisms associated with the interaction of an

edge wave and the vertex of an ideal trihedron as well as two adjacent vertices in

a realistic three dimensional structure containing finite edges. These mechanisms

may contribute significantly in the radiation patterns of several antennas (such as

rectangular horns) and the RCS of edge structures investigated with UTD tech-

niques, and therefore their incorporation improves the total UTD solution and

extend UTD as a powerful high frequency theory.

Explicit expressions of the edge wave were presented in Chapter II, derived

from the canonical half plane and infinite wedge problems. The investigation of

such idealized configurations was dictated by the need of a complete definition of

the edge waves and a better understanding of its behavior. It was found that the

edge wave, which, independently of its excitation, is essentially an edge guided ray

optical field, highly dominates the paraxial region of the edge due to its singular

behavior there. These characteristics imply that there must be a strong coupling

between antennas placed close to the edge of a wedge (which has been already

proven by Buyukdura 17]) and between two adjacent, vertices in a polyhedral body,

as found by Sikta [4].

The next simple configuration examined was the trihedron (a truncated
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wedge), as a first step to the approximation of more complex geometries. A dipole

radiating in the close vicinity of one of its edges produces an edge wave which

behaves essentially as a ray optical field in the vicinity of the vertex, provided

that the distance of the excitation dipole from the tip is sufficiently large. To

approximate the vertex diffracted wave a Physical Optics approach was adopted.

The latter was improved in Chapter IV, by adding to the uniform current a fringe

current component flowing in the vicinity of the terminating edges. Although,

the approach is neither rigorous nor complete from a PTD point of view, it yields

comparable results with moment method as well measured data and can be used

as a first engineering approximation to the edge wave edge and vertex diffraction

problems.

Within the limits of our ray optical approximations the results established

in Chapter IV can be possibly utilized for the examination of the double corner

and edge edge wave diffraction mechanisms, with several practical applications.

The latter, being also a possible extension of the present UTD so that it may

incorporate higher order diffraction mechanisms, awaits future work.
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APPENDIX A

A Uniform Asymptotic Approximation of the Integral

Ip(k) = fO' G(t) t-P 1 dt for W(p) < 0

In the above integral G(t) is a slowly varying continuous function of t. More-

over, let the large parameter k have a small negative imaginary part, i.e., it is

presumed that the medium of propagation is slightly lossy. The phase function

g(t) is stationary at the point t8 (g'(t.) = 0). Since in our applications g(t) ex-

presses the negative sum of the distance from a point Q on a straight line in space

to two discrete points not on this line , with t denoting the signed arc length

from the origin (t = 0) to the point Q, then g(t) is negative definite and attains a

maximum at t,. In this case it can be shown that

g'(0) = sign(t.) Ig'(O)l (A.1)

and

g"(t) < 0 ; for every real t. (A.2)

For convenience, it is assumed that eqs. (A.1), (A.2) are true in the following

analysis. Besides, the final result can he easily generalized for a phase flnrtion

not satisfying the above imposed properties.

For t, > 0 the major contribution to the integral Ip(k) arises from the vicini-

ties of the stationary phase (1 = is) and the end point (t = 0), which coincides

with the branch point singularity of the integrand. We examine the asymptotic
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behavior of the integral Ip(k) for the particular case where p = -1/2. An evident

transformation of variables is then C - v, which yields the equivalent form

I_/2(k) = 2 10' H(() exp {jkh(f)} dC (A.3)

where we have set

H() =G(C2 ), h(C) = g(C2 ) (A.4)

Since g(t) is stationary at to, where tf is real, then h(C) exhibits three collinear,

equidistant saddle points at Co = 0, f,2 = : o. (Note that f1,2 may be imaginary

if f, < 0). A convenient transformation in this circumstance is [28J

h(f) = ao - (a + a2)2 (A.5)

It readily follows that

ao = h(C1,2) = g(ts) (A.6)

a = -isgn(t,) I h(f 1,2) - h(O)I = -sign(f) I /g(t.) - g(O)

Provided that a is not very large the integral l-/ 2(k) can be approximated by

1-1/2 2G(O)i=o exp{jk[a 0 -(a + 2 )21}d (A.7)

Using

h"(0) = 2g'(0) ; h"(Ci) = 4to g"(t,) ; h(4)(0) = 12g"(0) (A.8)

it is not difficult to verify that the mapping derivative at a = 0 for a sufficiently

small equals to
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dt,= 2101) r 21a1 2 ]/

F_'O) 11/4=s 1 8= 0t91 o [It"-OL I (A.9)

For the details .of the derivation of eqs. (A.8), (A.9), which are useful in the

examination of the limiting behavior of the asymptotic solution as a - 0 (or

to -" 0), the reader is referred to (28]. The integral involved in eq. (A.7) can be

expressed in terms of the parabolic cylinder function of order -1/2. In particular,

one obtains
fr exp (-pj8)

1/ 2(k) = G(O) (2k)7/4  exp{jk(aO - a2 /2)} x

1g'1oF2)I-1/ llexP (i i/4) a %f ] (A.10)

We can employ the formula [29]

'Dp() = exp (-jp~r) VP(- Z) + %/(-p--- exp {-j(p + 1)7r'/2) Dp~~z (A.11)

for p = -1/2 and rewrite eq. (A.10) as follows:

= 0(0) 'exp (-jwr/8) @2/F2)0)L

I/2(k) = ) (2k) 1/ 4  exp k(aO - a/2)1Ig'(0)

j 7)- 12[lexp (i r/4)lalV2/ ]

+ % exp (-jwr/4) V- 1/21 exp (-jw/4)laIV/I ; t > 0 (A.12)

")-1l2[exp (jlr/4)[o v/2k] ;to < 0

It is reminded that the above representation is valid for small values of the param-

eter a. An approach valid for larger values of a appears in general cumbersome.

However, one can simply perturbate the original solution given by eq. (A.12), to

obtain an asymptotic approximation in which the stationary phase contribution

would reduce to the well known result for an isolated stationary phase point as a
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becomes large. In particular, for t, > 0 using eq. (A.9) one writes

1-1/2 ( k )  {)/4 exp (jk(aO-_a2/2))}2_ja x

GOj 0)j V.-12[exp(jw/4)ajv'] +

vF exp (-ju/4) G(ts Vil 2 [exp( -j/4)lalrk] (A.13)

From the asymptotic form of the parabolic cylinder function of order -1/2 129],

for aIva" > 1, one obtains

7)-/2[xp(ji/4)ajVk],,exp (jw/8) exp (jka2/2)

Substituting the above expression into the second term of eq. (A.13) it yields the

isolated stationary phase contribution

G:(t,)
*-1/2(k) ;t: exp {jk[g(t.) - w/4]}

A transformation similar to that of eq. (A.5) cannot be applied in the case of

an arbitrarily negative p, because the resulting integral cannot be reduced into '

closed form expression. To obtain a uniform asymptotic aproximation we adopt a

more empirical approach. Namely, it appears convenient to consider a quadrature

approximation of the phase function g(t) in the neighborhood of the end point f =

0, at which, as mentioned before, the integral presents a branch point singularity

g(') : g(0) + g'(O)t + (A.14)

2

Then, based on this approximation the behavior of the end point effect and the

coincident branch point singularity is examined. After some elementary manipu-

lation, which follows the same steps with the particular case examined earlier one

finally obtains the asymptotic result:

/IO(k) -, G(0)r(-p)(2k)P/ 2 exp(jpw/4) exp(jk[g(0)+ 42/2]) x

83



[fro ]p { exp (-jp) Vp[ex p(j7r/4)IIV2-Ik] ;t*. > 0
D[exp(ir/4)jaiv' ]  ;tg < 0

where now

g'(O) (A.16)

21g,"(O)l

It should be noted that the above equation represents the end point effect only.

Evidently, it exhibits an abrupt phase change of exp (jpir) as the stationary phase

point passes through the origin. This discontinuity should normally compensate

the discontinuity of the stationary phase contribution to the integral Ip(k) in order

for the total asymptotic solution to remain uniform across the boundary tj = 0.

Such a stationary phase point effect which guarantees the uniformity of the total

solution is derived by a heuristic multiplicative correction of the isolated stationary

phase contribution with ,ne proper transition function.

The substitution

F p( a2) = exp(-jpw/4)(Vi al) - P exp(jka2 /2) Vpfexp(jw/4)IaIVi]

(A.17)

furnishes an alternative expression for the end point contribution, namely

Ip(k) :: G(O) r(-p) k exp (-jpw/2) exp {jkg(O)} [g'(O)] P Fp(ka2 ) (A.18)

where the branch

(-1)" = exp (jpw)

should be chosen. In the above equation Fc(.) behaves essentially as a complex

transition function: it reduces to unity for large values of its argument and com-

pensates the singularity of g'(0) as the stationary point approaches the end point
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at. t = 0. For a detailed description of the behavior of the transition function Fp(.)

the reader is referred to Appendix B.
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APPENDIX B

Edge Wave Transition Functions

Two types of transition functions are extensively used in the examination of

the edge and vertex edge wave diffraction mechanisms arising from the integration

over the singularity of the edge wave which coincides with the end point of the

inlegration path:

" The edge wave vertex transition function F5 ,(r)

" The edge wave edge transition function Fe4().

where r > 0. The latter for every r is the complex conjugate of the former, which

is related with the parabolic cylinder function of order -v via

F-c,(z) = exp(jair/4)(2ITi)' / 2 exp(jlzr/2) I)_1,[exp(jw/4)231 (B.1)

For a complete discussion of the properties of the parabolic cylinder -d-ction the

reader is referred to (29,30,31]. For small values of its ,,rgument it assumes .he

power series expansion

while for large arguments it can be approximated by the first terms of the asymp-

totic expansion

D-g(:) = exp(-:2/4): - V [- +

2:2
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4+,t(,. + 1)(,M + 2)(v + 3) )B]3Z(B.3)

Incorporating expressions (B.2), (B.3) in the definition (B.1) of the transition

function outside the transition regions one may assume the approx~imations

1'-_,(,) :: vf/qexp(jv,,/4)lzl " 12 exp(jiti/2)

[ I 2exp(jv/4) j(i- 1/2) .+(

for Irl << 1, and
F,(r) 1-"(" + 1) v(v + 1)(v + 2)(v + 3)

4jz 32z2

Of particular importance in our numerical applications is the transition func-

tion of order -1/2 (v = 1/2). The parabolic cylinder function of order -1/2 can

be expressed in terms of the modified Bessel function K of order 1/4 130,31] as

follows:

=-_/2(z) =V-I/ 4(z2/4) (B.6)

Incorporating (B.6) and the relationship [30]

K 1 4 (jn/2) = - 2exp()3 / 8 )H(2)(/2)

into eq. (B.I) for v = 1/2 it yields the expression

Fl/ 2 (r) = !exp(-j3u/8)exp(jjrj/2) I H(2) (ItI/2) (B.7)

Eq. (B.7) can he rewritten in ternix nf the Bessel ftinrtinns J 4 nd .1 1/4. namely

= 2 exp(j*/4)exp(jInT1/2)

[exp(-jw/8)LJ_/ 4 (lrI/2) - exp(j7r/8)JI/ 4(IrI/2)]

B.7)
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The Bessel functions of order 1/4 and -1/4 are tabulated in 132]. Therefore, eq.

(B.7) can be readily employed for the numerical computation of the function FC 1/2.

"i he relatively si.nple computer program that follows uses a quadrature approxi-

mation of the Bessel functions for jrj < 0.75, an approximation up to order IzI - 2

for Ir I > 2.5 and a third order Lagrangian interpolation in the transition region, to

achieve an up to third decimal point accuracy of the edge wave transition function.

The amplitude and the argument of the edge wave transition function is plotted

in Figs. 38 and 39 respectively.
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C Subroutine for the evaluation of the edge wave
C transition function b(z).

comPLIx FUNCTION PCYTIZD)

C Number of points In the Interpolation region.
PAPAMgTKR INP-49

COMPLEX CJ.CISCP04.CP3$
INTEGER 2
REAL MI).PN).(N)SSLI3
REAL Pl.3.N4J1..0AID.P3

4 REAL DX1.D12,7

C Define limits of the small argument-linear Interpolation-largo argument
C regions for the approximation of the Sessel runctions so that a three
C digit accuracy is achieved.

XD-0. *1D

01 4-3 .6256099032
G34-1 .2254167024
71-3.141592GS3
U-0(. .1.)
Cri-f .707106731. .707106781)
C?36-I .9233&79S32,.3&2663432)
CIB -CONJGf CFJI)
DATA X..Sl......,...2224262S3........

DATA 3N/.97369,..1704,.6693S,.S2595..31619,.2S111..1229O..003S9,-.1@447
1,-.19919.-.27877.-.34135.-.33751,-.41537,-.42SS7...416S0.-.39622
2.-.3S947.-.31059,-.2S192,-.11608.-.11550,-.04387,.02694. .09403

S.-.2367l.-.2S077.-.25466,-.249d2,-.23251/
DATA 71/.7553S..76901,.7S223..71291.654S3..5S035..49366..327S1..29623
l..19233.0S947,.0091G.-.10064.-.18235.-.2S21.-.30S15,-.34926
2.-.37476.-.3g4,-.37135,-.S873.-.)251.-.21097.-.22722,-.16663
3.-.10174.-.03S14..03057,.09293,.14967..19579..23566,.268..266

C step site.
#- .2

C Approximation of the sessel functions.
IP(XD.LT.SR) TUN

C Small argument form.
1F(MDLZ.O.) TUNH

PCFlafv00.)
UEtTURH

ULSE lr(XD.LT.INLR) TUZh
ICF?.SQMTIPI'SQUT(2.'XD) )CPJS'CSIP(CJZD0)/G34
12TUMN

BLUZ
JR14.SQ3T(SO3?(2./ZD))'(l.-XDIXD/3..ZD**4/42.)/034

ZEDI P
3LSZ ZF(XD.0S.SH.AIID.ZD.LT.NG) TUSK

C Interpolation segion.Lgratge three point Interpolation formula Is
C Utilized.

90 13 1-2,131-1
U(XDGS.3Z).ND.Z~t.'.Z(41))TUS

DX1.ZD-Z( I)
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17CASSCDX2).GT.Ab3(DXI)) COTO 14
II(ASS(DX2).Lt.AS(DXI)) 00TO 15

13 CONTIUR
14 .x/

-C Large argument form.
IL51 Fr(ZD.Gz.*0) TUEN

AM-COSMX-.1257l)
DM-SIN(XD-O. 125'?:)

$1-SZN(XD-O. 37S*PI)

1£ND P
is ?CFT-SQRT(PI'X0)'CPJ4'(CPIS'JH14-CflS'J?14).CEXP(CJ.1,)

ASTURN
CND

90



Ci

0.0 to 2.0 3.0 4.0 5.0

x

Figure 38: Amplitude of the edge wave transition function.
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